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Abstract

A micromacro thermomechanical modelization of grain behavior of a polycrystalline shape memory alloy
is presented[ This model\ based on thermodynamical approach and identi_cation of stress sources\ takes
into account experimental observations of the transformation microstructure[ Because plates of martensite
are usually observed to appear in domains\ similar to subgrains\ we show that determination of average
global fraction of martensite is not su.cient to describe grain behavior[ A better approximation is done by
taking an average fraction of martensite in each domain as internal variables[ With these parameters a full
description of evolution of material can be made[ We point out that free energy of the material depends on
an interaction matrix between martensites[ Moreover the calculation of this matrix for CuAlBe alloys allows
one to determine the interface between domains[ The results of this study are used to model the whole
behavior of the polycrystalline material with a self!consistent method[ Þ 0888 Elsevier Science Ltd[ All
rights reserved[

0[ Introduction

The thermomechanical behavior of solids undergoing martensitic transformation has been
studied for many years[ These materials may be divided into two classes according to the presence
of plastic ~ow "Cohen et al[\ 0868^ Christian et al[\ 0884#]

, in Shape Memory Alloys "SMA#\ no "or negligible# plastic ~ow occurs and the main mechanism
corresponds to the formation of martensitic plates with given eigenstrains[ The elastic behavior
of both phases is nearly the same^

, in the case of Transformation Induced Plasticity "TRIP#\ internal stresses are related with the
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transformation and induce plastic ~ow of the parent phase which in turn modi_es the trans!
formation conditions[ In addition\ the plastic behavior of such a two phase material appears
highly heterogeneous since\ in that case\ the yield stress of the product phase "martensite# is
several times higher than that of austenite[

SMA polycrystals present special industrial interest because of their subsequent super!
thermoelasticity "Krishnan et al[\ 0863# and so have been studied by many authors[ To model their
behavior\ various approaches have been used[ At the microscopic level\ James et al[ "Chu and
James\ 0884^ Abeyaratne et al[\ 0885# have extended the concept of Weschler et al[ "0842# to more
complex transformation microstructures corresponding to minima of the free energy[ In that case\
the polycrystalline aspect is ignored and dissipation is not allowed so that some aspects of the
overall behavior is not reproduced[ The thermomechanical behavior may also be obtained in the
framework of Generalized Standard Materials using the average volume fraction of martensite
and the mean transformation strain over the volume of martensite as internal variables^ see for
example\ Bekker and Brinson "0886#\ Boyd and Lagoudas "0885#\ Delobelle and Lexcellent "0885#\
Falk "0879#\ Leclercq and Lexcellent "0885#\ Mu�ller and Xu "0880#\ Peyroux et al[ "0885#\ Raniecki
and Lexcellent "0883#\ Sittner et al[ "0885#\ Stalmans et al[ "0884#\ Tanaka et al[ "0875#[ In that
case\ some di.culties occur to account for the interaction energy between austenite and martensite
and the determination of the evolution of the mean transformation strain becomes complicated[
In that case\ the ~uctuations of the transformation strain _eld inside the martensite are not taken
into account[ Micromechanical studies starting at the level of the martensitic plate where the
transformation strain may be taken as uniform\ associated with scale transition theories\ have been
more successfully applied to shape memory alloys using a two!phase approach "Sun and Hwang\
0880# or\ for a single crystal\ using MoriÐTanaka scheme "Sun and Hwang\ 0883#[ In both cases\
the polycrystalline microstructure is absent and in the case of Sun and Lexcellent "0885#\ the
variantÐvariant interaction model does not allow spatial organization of the transformation micro!
structure nor accommodation by orientation of the variantÐvariant interfaces[ Polycrystalline and
texture e}ects are accounted by Bhattacharyan "0885# with a purely kinematical point of view
considering the change of symmetry that is produced during the transformation from austenite to
martensite[ This approach is able to determine the polycrystalline recoverable strain but no
information is given on the overall behavior\ in addition a stress free microstructure is assumed
inside each grain[ In a previous study\ Patoor et al[ "Entemeyer et al[\ 0884# use a self!consistent
model for the polycrystalline problem and an interaction matrix for the variant interactions
allowing some self organization of the transformation microstructure[ However this matrix needs
experimental identi_cation of some material parameters[

For a polycrystalline Representative Volume Element "RVE# the overall behavior strongly
depends on material free energy composed of "Wollants et al[\ 0868^ Warlimont\ 0865#]

, a chemical part due to the lattice change related to the phase transformation^
, an interfacial term associated with the creation of interfaces between austenite and martensite[

This part is usually negligible for classical SMA^
, an elastic part related to imposed boundary conditions and internal stresses associated with inter!

and intragranular incompatibilities of the transformation strain _eld[

Grain boundaries are obstacles for the expansion of martensitic plates over the RVE so that
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interactions between transforming grains lead to the development of stress and strain ~uctuations at
the grain scale[ The resolution of such a problem has been examined for elasticÐplastic polycrystals
"Lipinski and Berveiller\ 0878#[ The self consistent model developed in this context will be recalled
in Part II and extended to SMA[

Inside the grains\ stress and strain ~uctuations also appear due to the formation of a trans!
formation microstructure[ The shape of the elementary transformed volume corresponds generally
to a thin plate[ Moreover\ for the whole microstructure\ one has to take into account the spatial
distribution of these plates and their local interactions[ Contrary to grain boundaries\ the interfaces
related with transformation "austeniteÐmartensite and martensiteÐmartensite interfaces# are highly
mobile and must be considered as internal variables describing the transformation microstructure[

The overall thermomechanical behavior of a grain is clearly sensitive to these two microstructural
levels] plate scale and spatial distribution of plates[ Nevertheless for modelling a simpli_ed re!
presentation of the changing microstructure has to be introduced[ From both a pure kinematical
approach and the expression of the free energy\ the volume fractions of each variant n"fn\ n � 0Ð
13# appear as the adequate set of internal variables for the description of the martensitic trans!
formation as well as for that of the reorientation mechanism "Patoor et al[\ 0876#[

The derivation of the thermomechanical constitutive relation of the single crystal embedded in
the polycrystal follows from classical approach in the framework of thermodynamics of irreversible
processes since creation "or shrinkage# of martensitic plates proceeds with "low# intrinsic dissipation
as observed on single crystal experiments[ These experiments "Grujicic et al[\ 0874^ Buathier\ 0884#
show two types of growing of martensite area[ In well prepared single crystal\ the transformation
is related with the motion of a single interface between austenite and martensite corresponding to
the growing of a single plate[ In that case\ the interfacial motion is thermally activated and lies
between 09−5 and 09−1 m:s[ When more than one nucleation site exists "in ordinary single crystals
or polycrystals# the transformation progresses by creation of new plates[ Then the direct or reverse
transformation proceeds quasi instantaneously "plates are formed with near sound velocity#\ the
framework of time independent inelasticity seems to be appropriate "Rice\ 0860#[

In that case\ the driving force on an internal variable "here " fn## has to reach a critical value
before transformation takes place[ This is equivalent to introduce a dissipation potential[ In the
_rst part of this paper\ the observed transformation microstructures are presented and analysed in
terms of incompatibilities considered as sources of internal stresses[ In the most common case\ the
observed microstructure corresponds to the formation of several domains such as subgrains in
which only one variant seems to be activated[ The boundaries between these domains have to be
described by additional internal variable Xi[ In the second part\ the free energy is decomposed into
two terms depending only on the loading parameters "E\ T# and the set of volume fractions of
martensite variants " fn#\ and a third term depending on the whole transformation strain _eld with
internal variables "Xi\ " fn##[ This last term is developed for a microstructure with domains and the
additional internal variables "Xi# are deduced from the minimization of the corresponding free
energy term[ Since the remaining internal variables are linked together by the de_nition of the
volume fractions "9 ¾ s

n

fn ¾ 0#\ the related physical constraints are taken into account using the

KuhnÐTucker conditions in the derivation of the corresponding driving forces[ This allows one to
_nd\ in a classical way\ the evolution of the internal variables " fn# and the corresponding overall
response for the grain[ The model leads to an interaction matrix between variants and will be
applied to a CuAlBe alloy[
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In chapter 5\ experimental results on CuAlBe single crystals are presented and used to identify
the material parameters introduced during the modelization[

1[ Different transformation microstructures observed for stress induced martensitic phase

transformation

Tensile tests were performed on polycrystalline CuAlBe wires[ Figure 0 presents the evolution
of stress assisted martensitic transformation during loading "Buathier\ 0884#[ One can note that
phase transformation occurs inside grains with non randomly spatial distribution[ In fact\ two
types of martensitic plates arrangement can be distinguished in each grain[

1[0[ Morpholo`y A

The _rst plates distribution is shown in the area A and is the most common feature[ A grain is
divided into substructures named domains[ Each domain of volume Vn and boundary 1Vn is
de_ned as a mixture of untransformed matrix and parallel plates of martensite corresponding to
the activation of only one variant[ Other variants encountered in the grain stand mainly in other
domains[ During loading\ phase transformation proceeds with creation of new plates of one or
more variants^ however these new variant plates stay in the previous domain[ Three scales of
interfaces\ where incompatibilities and hence sources of stresses exist\ can be determined[

"0# Inside domain interfaces have to accommodate lattice di}erences between austenite and
martensite[ This is actually realized by martensitic transformation itself\ as it does not di}er in this
material from that obtained from the Weschler et al[ theory "0842#[ This result was emphasized by
El Amrani Ziri_ "0883# in a nearly identical material] CuZnAl alloy[ He found that\ for this
material where thermoelastic martensite also exists\ and with the hypothesis of very few plasticity\
homogeneous and isotropic elasticity\ no temperature e}ect\ W[L[R[ strain transformation _eld oT

_lls quite well compatibilities conditions[ These were given by Kro�ner "0879# as

Inc oT � h "0#

which\ in the case of a piecewise uniform transformation strain _eld\ leads to

Inc oT
ij � −eikmejlno

T
mnnknl � hij "1#

where eijk is the permutation tensor\ nj the unit normal to the interface and h the incompatibility
tensor[ The condition of compatibility is then

h � 9 "2#

The condition of compatibility is automatically satis_ed if n is the normal to the habit plane[
The interface corresponding to the habit plane between martensite and matrix can thus be

considered as compatible and no stress sources are produced there[
"1# Plates of martensite are not in_nite and their tips lie in the domain boundaries[ Moreover\

at this place\ plates of martensite of one domain meet either plates of another variant of the other
domain or grain boundaries[ So\ interfaces between domains have to accommodate di}erent
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Fig[ 0[ Various photographs taken during a tensile test of a polycrystalline 00[4 wt)AlÐ9[4 wt)BeÐCu alloy at room
temperature and showing the evolution of plates of martensite in two grains] A and B[ Strain is "a# 9[60)\ "b# 0[58)\
"c# 3[00)[
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transformation strains[ It is reasonable to expect from this situation some possible incompatibilities[
These incompatibilities will induce internal stresses and contribute to the free energy of the material[

Due to the characteristics of martensitic transformation\ interfaces appear as a type of quasi!
dislocation wall[ Then\ at this scale\ the domain frontier presents ~uctuations due to stacking of
martensite and matrix areas[ Near the interface\ the stress _eld should present such ~uctuations[
On the other hand\ as for the case of stresses created by in_nite or limited dislocation walls\ we
assume that ~uctuations reduce far from the interface and the stress _eld due to incompatibility
becomes more uniform[ Such an interface between domains is able to move according to the
external loading or to the internal stresses and will be another degree!of!freedom for the trans!
formation microstructure[

"2# Finally one has to take into account the meetings of domains or plates of martensite with
grain boundaries[ These are expected to be other incompatible interfaces whose main characteristics
are to be given\ at the opposite of domain boundaries inside a grain[ At a more macroscopic point
of view\ this phenomenon can be viewed as part of the problem of intergranular accommodation
during loading[ For that reason\ these sources of stress can be treated with the self!consistent
method applied to polycrystalline material which will be developed in Part II[

For single crystal study\ the only incompatibilities to be taken into account are the ones created
at the domain boundaries^ their modelization will be the aim of Part I[

1[1[ Morpholo`y B

The second observed morphology or martensitic transformation is presented in area B of Fig[
0[ Plates of two variants of martensite cross each other[ Special attention has to be paid to the
meeting region where some striated features occur as a consequence of a tentative of accom!
modation[ During transformation\ energy is then stored inside these regions whose precise descrip!
tion has to be done for complete modelization[

1[2[ Discussion

One can see from experiments that third order internal stresses are clearly dependent of the
intragranular substructure\ not only in terms of shape\ orientation and crystallography for each
variant plate\ but also in terms of spatial distribution of these plates[ As the thermomechanical
behavior of material depends strongly on internal stresses\ the models need to take into account
these substructures[

A classical way to solve the problem of thermomechanical behavior of composite material is to
use EshelbyÐKro�ner or Kro�ner:MoriÐTanaka approaches "Mura\ 0882#[ These types of models
are based on inclusions of phase 1 "e[g[ martensite# embedded in a matrix phase[ For morphology
A\ this approach cannot be used directly\ since each plate of martensite is considered as a unique
inclusion inside a corrected matrix with uniform transformation strain[ This is the case neither for
morphology A nor B[ Moreover no spatial correlations should exist between inclusions] this
excludes the reorientation mechanism between variants commonly observed[ Finally inclusion
distribution does not appear in the model which "implicitly# assumes a disordered substructure[
Thus\ a speci_c micromechanical model has to be developed in order to take into account the
transformation microstructures[
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Such an approach\ also based on EshelbyÐKro�ner and MoriÐTanaka model\ considers as
inclusions not the plates themselves but domains of volume Vn as de_ned in the case of morphology
A] mixture of matrix and plates of one variant of martensite[ Such an approach has been developed
in the previous studies of Patoor et al[ "Entemeyer et al[\ 0884^ Entemeyer\ 0885^ Patoor et al[\
0885\ 0886# presented in the Introduction[ They show that\ with respect to classical models of
Delobelle and Lexcellent "0885# or Stalmans et al[ "0884# some additional internal parameters
should be taken into account[ These parameters are related to the set of "fn#[ These variables can
be obtained from experimental measurements and then no _tting parameters are required[ On the
other hand\ minimization of energy for surface orientation between inclusions and surrounding*
constituted by another domain*is made[ Using the self!consistent approach\ the model has been
applied to uniaxial loadings of polycrystals[ The obtained results agree quite well with experiments[

This model still requires some input parameters obtained from metallurgical observations[ The
model developed here\ based on a thermodynamical study of energy created by incompatibilities
at the boundary domains will attempt to be released from these types of input data[

In the case of morphology B\ the modelization of internal sources of energy needs a detailed
description of the crossing of martensitic plates[ This complex problem will not be discussed in the
frame of this study[

2[ Free energy related to martensitic transformation in a grain

In this part\ we consider a grain with volume V and boundary 1V as a representative volume
element "RVE#[ The stress free austenite matrix is considered as the reference state[ Thermal strains
and thermomechanical coupling are neglected and homogeneous elasticity is assumed[

When transformation occurs\ some parts vi "i � 0ÐN# of V undergo uniform transformation
strains oTi[ The _eld oT"r# is called the transformation strain _eld[ From experimental crys!
tallographic measurements and data on invariant lattice transformation\ the Wechsler et al[ "0842#
phenomenological theory allows one to determine the characteristics of this transformation[ By
this way\ it is possible to forecast orientation relations between matrix and martensite\ habit plane
normal n?\ displacement direction m and displacement magnitude `\ illustrated in Fig[ 1[ The
transformation strain is then expressed for a typical variant by

Fig[ 1[ Deformation of a matrix volume element into a martensitic one[
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oT
ij �

0
1
"min?j¦mjn?i#` "3#

For the sake of symmetry of matrix crystalline lattice\ many equivalent systems are implied in
martensitic transformation[ There are 13 of these so!called variants in CuAlBe alloys[

It is assumed that the transformation strain _eld is piecewise uniform\ corresponding to one
given value of the transformation strain over the whole volume of each martensitic plate and being
zero inside the matrix[

The free energy of the austeniteÐmartensite system results from]

, the elastic strain energy with density v"r#\

v"r# � 0
1
sij"r#oe

ij"r# "4#

s is the local stress _eld created by the loading conditions on 1V and by the incompatibilities of
the oT _eld^

, the crystallographic "or chemical# free energy with density 8"r#^
, the interfacial energy related with austeniteÐmartensite interfaces as well as martensiteÐmartensite

ones[ These last terms are usually neglected in the case of thermoelastic shape memory alloys[

Other sources of free energy "points defects\ dislocations\ [ [ [# are neglected and the ther!
momechanical loading process is assumed to be slow enough so that the temperature remains
uniform over the RVE[

For a unit volume V\ the free energy F is given by

VF � gV

v"r# dr¦gV

8"r# dr "5#

Since 8"r# is uniform in the austenite "�8A over the volume VA# and uniform inside the martensite
"�8M over the volume VM#\ the second term in eqn "5# may be written as

gV

8"r# dr � VA = 8A"T#¦VM = 8M"T# "6#

so that

0
V gV

8"r# dr � f = 8M"T#¦"0−f # = 8A"T# "7#

� 8A"T#¦"8M−8A# f "8#

where f �"VM:V# is the total volume fraction of martensite[
In the vicinity of the equilibrium temperature T9 where 8A � 8M\ the chemical part of the free

energy is usually linearized by

0
V gV

8"r# dr � B"T−T9# f "09#

where B and T9 are material parameters[
The elastic part of the free energy
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W �
0

1V gV

sij"r#oe
ij"r# dr "00#

may be transformed using kinematical conditions inside V]

oij"r# � u"i\j# "r# � oe
ij"r#¦oT

ij "r# "01#

and boundary conditions on 1V]

ui � Eijxj "02#

From "00# and "01#\

W �
0

1V gV

sij"r#ðui\ j"r#−oT
ij "r#Ł dr "03#

By partial integration and taking into account boundary conditions "02#\ "03# is reduced to

W �
0
1

SijEij−
0
1 gV

sij"r#oT
ij "r# dr "04#

where

Sij �
0
V gV

sij"r# dr "05#

represents the overall stress[
We decompose the stress s into the macroscopic stress S and the internal stress t "only related

with the oT _eld#]

s � S¦t "06#

so that

tij\j"r# � 9 "07#

and

0
V gV

tij"r# dr � 9 "08#

Using uniform elasticity with moduli C\ "04# is written as

W �
0
1
"Eij−ET

ij#Cijkl"Ekl−ET
kl#−

0
1V gV

tij"r#oT
ij "r# dr "19#

where

ET
ij �

0
V gV

oT
ij "r# dr "10#
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represents the overall transformation strain and the second term of "19# is only related with the
transformation strain _eld oT"r#[

Since oT is uniform over the di}erent martensitic domains vn\ one has

ET
ij � s

n

oTn
ij fn 0fn �

vn

V1 "11#

and for the chemical energy]

B"T−T9# f � B"T−T9# s
n

fn[ "12#

Finally\ the Helmholtz global free energy F depends on control parameters "E\ T# and trans!
formation _eld "oT#[ Its expression\

F"E\ T\ "oT## �
0
1
"Eij−ET

ij#Cijkl"Ekl−ET
kl#¦B"T−T9# s

n

fn−
0

1V gV

tij"r#oT
ij "r# dr "13#

or

F"E\ T\ "oT## �
0
1
"Eij−ET

ij#Cijkl"Ekl−ET
kl#¦B"T−T9# s

n

fn−s
n

0
1

tn
ijo

Tn
ij fn "14#

with oTn the transformation strain for variant n de_ned in eqn "3#\ needs the determination of the
mean internal stress tn over the volume vn of variant n[

tn
ij �

0
vn gvn

tij"r# dr "15#

If the elastic interaction energy Wint\ expressed by

Wint �
0

1V gV

tij"r#oT
ij "r# dr "16#

vanishes\ the free energy F of V depends only on the control variables E and T and the internal
variables fn] F � F"E\ T\ fn# irrespective of the microstructure of the oT _eld[

This is obviously not the case due to the incompatibilities of the transformation strain _eld[
In the next part\ we derive an expression for this interaction energy Wint for a domain type

microstructure using the fact that the domain interfaces are mobile without dissipation[

3[ Intragranular interactions between variants forming domains

For a given state of transformation characterized by the set of volume fraction "fn#\ the
interaction energy Wint �"0:1V# ÐV tij"r#oT

ij "r# dr depends on the transformation microstructure\ i[e[
the oT _eld as previously mentioned[
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In this work we focus on the case of intragranular microstructures presented in Fig[ 2 where the
active variants de_ne austeniteÐmartensite domains[ Each domain has a volume Vn and the
martensite with transformation strain oTn occupy a volume vn[ In the grain\ each domain\ or island\
ends at grain boundary in such a way that these domains meet the other ones by only a side[ This
interface between two domains "n\ m# is supposed to be a plane with unit normal Nnm[ From Fig[
2 and notation previously introduced\ we de_ne]

, the volume fraction of each domain n] Fn �"Vn:V# with the relation

s
n

Fn � 0 "17#

, the volume fraction of variant n over the volume V] fn �"vn:V#^
, the volume fraction of variant n inside the corresponding domain Vn]

jn �
vn

Vn

�
fn
Fn

"18#

, the mean transformation strain over Vn]

o¹n
ij �

0
Vn gVn

oTn
ij dV � oTn

ij

vn

Vn

� oTn
ij jn "29#

, the overall mean transformation strain over V]

ET
ij � s

n

fno
Tn
ij "20a#

or

ET
ij � s

n

Fno¹
n
ij "20b#

This global transformation strain ET can be described either by "20a# or by "20b#\ the last equation
being more adapted for the estimation of the internal stresses[ Since the interface between austenite

Fig[ 2[ Representation of the RVE showing the partition of volume V into austenite:variant i of martensite domains Vi[
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and martensite inside the domains are compatible\ the sources of internal stresses "and consequently
of the internal energy# are located on the boundaries between domains corresponding to the tip of
martensitic plates[ These boundaries may be considered as quasidislocation walls with long range
internal stresses[

As a consequence\ the stress _eld ~uctuates\ weakly inside the domains and presents jumps
across the domain interface[ Therefore\ it may be evaluated using interface operator techniques\
with the jumps of mean transformation strain across the interfaces as sources of incompatibilities[

The interaction energy depends now on the given set of volume fractions "fn# and the micro!
structural parameters of the domains reduced to the volume fractions "Fn# and the normal to the
interface "Nnm#[

The progress of transformation results from creation of new plates inside domains^ it may be
assumed that this mechanism leads to dissipation according to the attenuation of the elastic waves
related with the bursts of the plates[ On the contrary\ for proportional loading\ one can assume
that the domains microstructure evolves without dissipation so that the corresponding internal
variables ""Fn#\ "Nnm## should minimize the corresponding free energy term Wint[

According to these assumptions the interaction energy becomes

Wint �
0
1

s
n

fno
Tn
ij t¹n

ij "21#

where

t¹n
ij �

0
Vn gVn

tij"r# dr "22#

is the mean internal stress inside the domain Vn[ Using the de_nition of the mean transformation
strain over this domain given by eqn "29#\ "16# may be transformed in

Wint �
0
1

s
n

Fno¹
n
ijt¹

n
ij "23#

or

Wint �
0
1

s
n

Fnt¹
n
ijjno

Tn
ij "24#

The relations concerning the internal stresses t¹n are deduced from the zero mean value conditions
"08#

s
n

Fnt¹
n
ij � 9 "25#

and\ for each interface Nnm\

t¹n
ij � t¹m

ij −Qnm
ijkl"o¹n

kl−o¹m
kl# "26#

where the interface operator Qnm is developed in Appendix A[
From "25# and "26#\ the stress inside each domain m is given by
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t¹m
ij � s

n

FnQ
nm
ijkl"o¹n

kl−o¹m
kl# "27#

and the interaction energy becomes

Wint � −
0
1

s
m\n

FmFnA
mn "28#

with

Amn � 0
1
"o¹m

ij −o¹n
ij#Qmn

ijkl"o¹m
kl−o¹n

kl# "39#

Here\ the following properties of Q are used]

Q"N# � Q"−N#

Qijkl � Qklij

which assure the de_nite positivity of the Amn terms[
When the transformation occurs under large applied stress "either by increasing stress at a given

temperature or by cooling at a constant applied stress#\ experimental observations point out that
mainly two principal variants grow up "Entemeyer\ 0885#[

In that case\ the interaction energy reduces to the simpli_ed form

Wint � −0
1
FnFm"o¹n−o¹m#Qnm"o¹n−o¹m# "30#

which has to be minimized with respect to Fn "since Fm � 0−Fn# and Nnm^ n and m denotes the two
active variants[

Using eqns "17#Ð"29#\ "30# is explicitly given by

Wint � −
0
1

Fn"0−Fn# 0
fn
Fn

oTn−
fm

0−Fn

oTm1Qnm 0
fn
Fn

oTn−
fm

0−Fn

oTm1 "31#

The derivation of Wint with respect to Fn leads to

1Wint

1Fn

� −
0
1

"−j1
n o

TnQnmoTn¦j1
moTmQnmoTm# "32#

whose annulation gives the condition

jnan � jmam "33#

where

a1
a � oTaQaboTa "a\ b � n\ m# "34#

depends only on the unit normal to the interface between the two domains n and m[
The corresponding minimized interaction energy is now

Wint � −
0
1

fnfm
0

anam

"amoTn−ano
Tm#Qnm"amoTn−ano

Tm# "35#

or\ introducing the interaction matrix Hnm �"0:anam#"amoTn−ano
Tm#Qnm"amoTn−ano

Tm#\
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Wint � −0
1
fnH

nmfm "36#

Since the terms oTmQnmoTm\ Fn and "0−Fn# are always positive\ the stability of the partial equilibrium
is satis_ed[

Equation "35# has to be minimized with respect to the orientation of the interface for two given
variants[ This can be performed numerically[ It is worthwhile to point out that this matrix depends
only on the elastic behavior of the material and the given set of transformation strains "oT#[

For CuAlBe alloys\ the matrix H has been calculated and the results are discussed in Appendix
B[

In the case where more than two variants are activated\ we assume that the interaction energy
is still described by the same type of relation so that

Wint � −
0
1

s
n\m

fnH
nmfm "37#

As discussed previously\ this is an approximation of the multiple interaction between domains[
Nevertheless\ as it can be observed in experimental works "Entemeyer\ 0885#\ this approximation
is the best for high stress induced transformation where two principal variants are activated[

4[ Expression of the free energy and behavior of a grain

Once the interaction energy term is obtained\ the Helmholtz global free energy F per unit volume
of a grain is from "13# and "37#]

F"E\ T\ "fn## �
0
1
"E−ET#C"E−ET#¦B"T−T9# f¦

0
1

s
n\m

Hnmfnfm "38#

E and T are the control variables and the set "fn# appears as an internal variable with the physical
constraints

fn − 9 for each n "49a#

s
n

fn ¾ 0 for the whole volume fraction "49b#

The overall transformation strain ET is given by eqn "11# and f � s
n

fn[ The terms C\ B\ T9\ oTn and
Hnm are material constants[

The Gibbs free energy C"S\ T\ "fn## is deduced from "38# by the Legendre transformation

SijEij � F¦C "40#

so that

C"S\ T\ "fn## �
0
1

SijC
−0
ijkl Skl¦SijE

T
ij−B"T−T9# f−

0
1

s
n\m

Hnmfnfm "41#

or
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C"S\ T\ "fn## �
0
1

SijC
−0
ijkl Skl¦s

n

Sijo
Tn
ij fn−B"T−T9# s

n

fn−
0
1

s
n\m

Hnmfnfm "42#

The physical constraints "49# are taken into account using the KuhnÐTucker conditions in order
to de_ne the thermodynamical forces Fn on each volume fraction fn[

To the "n¦0# conditions "49#\ n¦0 Lagrange multipliers l9 and ln are introduced[ They are
de_ned by

l9 "s
n

fn−0# � 9 "43a#

ln"−fn−9# � 9 for each n[ "43b#

The Lagrangian L"S\ T\ "fn## of the complementary free energy C is de_ned by

L"Sij\ T\ "fn## � C"Sij\ T\ "fn##−l9 "s
n

fn−0#−s
n

ln"−fn# "44#

The driving forces Fn on the volume fraction fn is de_ned and given by

Fn �
1L
1fn

�
1C
1fn

−l9¦ln "45#

and\ from de_nition "42# of C\

Fn � Sijo
Tn
ij −s

m

Hnmfm−B"T−T9#−l9¦ln "46#

For time independent behavior\ the transformation may progress on a current variant n\ i[e[ f¾n � 9\
only if the driving force reaches a critical value Fc

n" fn# depending on the current state of trans!
formation[ This hypothesis corresponds also to the dissipation process occurring during the
martensitic transformation and described by a dissipation potential Wd[

Now\ the criteria for transformation on a variant n*f¾n × 9*is given by

Sijo
Tn
ij −s

m

Hnmfm−B"T−T9#−l9¦ln � Fc
n "47#

and the following conditions on the Lagrange multipliers must be satis_ed]

ln � −Sijo
Tn
ij ¦s

m

Hnmfm¦B"T−T9#¦l9¦Fc
n − 9 "48a#

l9 � Sijo
Tn
ij −s

m

Hnmfm−B"T−T9#¦ln−Fc
n − 9 "48b#

As soon as a variant reaches a volume fraction equal to unity or if the global volume fraction
reaches one\ the constraints "48# limit the transformation even if conditions "47# are satis_ed[

The reverse transformation*f¾n ³ 9*may happen if the following conditions are satis_ed on
variant n]
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Sijo
Tn
ij −s

m

Hnmfm−B"T−T9#−l9¦ln � −Fc
n "59#

and Lagrange multipliers have to satisfy

ln � −Sijo
Tn
ij ¦s

m

Hnmfm¦B"T−T9#¦l9−Fc
n − 9 "50a#

l9 � ¦Sijo
Tn
ij −s

m

Hnmfm−B"T−T9#¦ln¦Fc
n − 9 "50b#

Once the criterion for direct or reverse transformation rates f¾n is satis_ed\ the coherency relation

Fþ n � Fþ c
n "51#

or here

s
ij

1Fn

1Sij

Sþij¦
1Fn

1T
Tþ¦s

m

1Fn

1fm
f¾m � Fþ c

n "52#

allows to determine the evolution of the transformation rates f¾n for each variant as a function of
the rate of the imposed control variables Sþ and Tþ[

Because variants n of martensite come from symmetries in the matrix:martensite lattice change\
critical forces Fc

n are reasonably assumed to be identical*Fc
n � Fc and since for single crystals

the critical force Fc is practically independent of the amount of martensite\ Fþ c can be assumed to
be zero[

In that case\ "52# reduces to

oTn
ij Sþij−BTþ−s

m

Hnmf¾m � 9 "53#

The thermomechanical constitutive equation for the grain is de_ned by the relation between the
overall stress rate Sþ\ strain rate Eþ and change of temperature Tþ[

From the de_nition "11# of ET and S "05#\ one gets

Sþij � Cijkl"Eþkl−EþT
kl# "54#

or

Sþij � Cijkl "Eþkl−s
n

oTn
kl f¾n# "55#

Multiplying "55# by oTm yields

oTm
ij Sþij � oTm

ij Cijkl "Eþkl−s
n

oTn
kl f¾n# "56#

or using "53#

BTþ¦s
n

Hnmf¾n � oTm
ij Cijkl "Eþkl−s

n

oTn
kl f¾n# "57#

which can be solved for f¾n
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s
n

"Hnm¦oTm
ij Cijklo

Tn
kl # f¾n � oTm

ij CijklEþkl−BTþ

so

f¾n � s
m

Knm"oTm
ij CijklEþkl−BTþ# "58#

where

Knm �"Hnm¦oTm
ij Cijklo

Tn
kl #−0

Summations are made only on the potentially active variants\ i[e[ those satisfying the trans!
formation conditions "47# and "48#[

Introducing "58# into "55# yields to

Sþij � "Cijkl−s
n\m

Cijrso
Tn
rs KnmoTm

pq Cpqkl# Eþkl¦s
n\m

Cijklo
Tn
kl K

nmBTþ "69#

5[ Experimental identi_cation of material parameters

Equation "69# together with transformation conditions "47# and "48# describes the ther!
momechanical behavior of an austenitic grain with multivariant transformation conditions[

The material parameters appearing in "69#\ "47# and "48# are]

*the set of 13 transformation strains "oTn# from which the interaction matrix Hnm can be calculated^
*the elastic behavior de_ned by tensor C^
*the material constants related with the transformation] coe.cient B\ equilibrium temperature

T9 of austeniteÐmartensite transition and critical forces for austeniteÐmartensite transformation
of each variant n] Fc

n[

These material parameters needed for the determination of the behavior of the single crystal are
deduced from the crystallographic theory of martensitic transformation and from experimental
tensile tests at constant temperature or cooling tests at constant stress[

Since the elastic behavior is assumed identical for both phases\ the approximation of isotropic
temperature independent elasticity may be adopted[ In that case the shear modulus m and Poisson|s
ratio n are measured during the elastic loading of the austenite[

The crystallography of the martensitic transformation for CuZnAl or CuAlBe alloys were
extensive studied by De Vos et al[ "Entemeyer\ 0885^ De Vos et al[\ 0867#[

The transformation strains given in "3# are deduced from the scalar ` and the set of 13 vectors
ma and na given in the reference lattice of austenite g[ Knowing the orientation of the g lattice with
respect to the external frame\ the set of the 13 transformation strains can be calculated for CuAlBe[

The knowledge of the elastic behavior and the transformation strains allow to determine com!
pletely the 13×13 terms of the interaction matrix H\ whose terms are given and discussed in
Appendix B[ As discussed in Section 1\ this matrix constitutes only a simpli_cation "smoothing#
of the real microstructure[ For sake of numerical simpli_cation or in order to take into account
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additional physical phenomenon\ this interaction matrix can be simpli_ed or completed by
additional terms[

The material parameters B\ T9 and the critical forces Fc are determined from the experiments
on single crystals oriented to produce a single variant under uniaxial stress S22[ In that case the
interaction term H [ f vanishes since Hnn � 9[

During loading\ austenite : martensite transformation starts with the creation of one plate of
martensite\ corresponding at the beginning to fn � 9\ so s

n

fn � 0[ De_nition of Lagrange multipliers

given by eqn "43a# leads to the condition l9 � 9[ Transformation condition "48a# is now

S¦start
22 oT

22−B"T−T9# ¾ Fc "60#

At the end of transformation\ all the sample is transformed into martensite[ Then s
n

fn � 0 so

fn � 9[ De_nition of Lagrange multipliers given by eqn "43b# leads to the condition ln � 9[
Transformation condition "48b# is now

S¦end
22 oT

22−B"T−T9# − Fc "61#

When transformation progresses\ s
n

fn � 0 and fn � 9\ with only one variant active "n � 0#[ These

conditions lead to l9 � ln � 9\ and condition for the transformation progress yields

S¦
22o

T
22−B"T−T9# � Fc "62#

For the reverse transformation\ transformation condition "59# leads to

S−
22o

T
22−B"T−T9# � −Fc "63#

Equations "62# and "63# indicate that the transformation on a single variant in a single crystal
occurs at a constant stress or temperature\ which is almost veri_ed in our case "see Figs 3 and 4#[

Fig[ 3[ In~uence of a temperature change on the superelastic behavior "T � 07>C and T � −26>C# on a Cu!05 at[)Zn!
04 at[)Al single crystal "Ms � −59>C#[
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Fig[ 4[ Superthermal behavior of a Cu!05 at[)Zn!04 at[)Al single crystal under di}erent constant stress level "s � 026
Mpa and s � 076 MPa#[

A slight di}erence of these curves with the model corresponding to the experimental observed
{hardening| may be explained by the small strain approximation used in the model[ The same
phenomenon appears in the experimental results obtained during cooling at constant stress as
presented in Fig[ 4[

The slope of the curves S¦
22"T# or S−

22"T# given by

dS22

dT
�

B

oT
22

"64#

allows to _nd the parameter B[ The hysteresis of the transformation curves leads to the critical
force Fc � 0

1
"S¦

22−S−
22#oT

22 from isothermal tests[ Finally from "62# one gets the T9 value[
Once the material parameters are found\ the thermomechanical behavior of each grain of a

polycrystalline SMA is given by "69# and the transformation conditions "47# and "48#[ These
equations and material parameters can then be introduced in a self consistent scale transition
scheme to get the response of the polycrystal under multiaxial thermomechanical loading
conditions[ This will be the aim of another paper\ presented as Part II of this study about
polycrystalline SMA behavior[

For the whole stress!temperature range "T $ ð−59>C\ 19>CŁ and S22 $ ð9\ 149 MPaŁ# martensitic
start and _nish temperature Ms and Mf as well as austenite start and _nish temperature As and Af

as functions of S are given in Fig[ 5[ The quasi constant slope observed justi_es the linear
approximation made for the chemical energy in Section 2[
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Fig[ 5[ State diagram experimentally de_ned on a Cu!05 at[)Zn!04 at[)Al single crystal from tensile tests using
isothermal and anisothermal loadings[ Experimental points called s"T# with T � Ms\ Mf\ As or Af correspond to
transformation stresses found during tensile tests at uniform temperatures[ T"s# correspond to transformation tem!
peratures found during cooling and heating at a constant level of stress[

6[ Conclusions

During thermomechanical loading of shape memory alloy single crystals\ only one variant is
activated and the transformation progresses by displacement of plate interfaces or by creation of
new plates if nucleation governs the process[

For polycrystals\ the mechanism of transformation is quite di}erent due to grain to grain as
well as variant to variant interactions[ These interactions induce ~uctuating internal and multiaxial
stresses which in turn act on the transformation pattern which corresponds to a multivariant
transformation microstructure organized in domains[

While the transition from the grain level to the macroscopic one may be achieved using classical
self consistent models\ this paper describes the thermomechanical behavior of the grain taking into
account these speci_c microstructures[ Usual models where only the variant speci_c volume
fractions "fm# or even the whole volume fraction "f# are used as internal variables to describe
the transformation microstructure are not able to take into account the spatial organization of
martensitic plates observed in polycrystals[ We show that the interactions between martensitic
variants through the domain formation may be described by an interaction matrix depending only
on the known transformation strains[

In the case of two active variants corresponding to usual situations "Entemeyer\ 0885#\ the terms
of these matrices are evaluated by the introduction of the volume fraction of domains as additional
internal variables[ They are calculated assuming equilibrium between domains[
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The experimental determination of the material parameters introduced in the model is performed
for copper!based single crystals[ The terms of the interaction matrix are calculated and compared
successfully with a pure compatibility condition[ Classi_cation of the variantÐvariant interaction
is equivalent to the one well!known in physical metallurgy "El Amrani Ziri_\ 0883#[ The results
obtained from experiments and modelization\ presented in this paper\ are introduced into a
thermomechanical self!consistent model "presented in another paper corresponding to Part II
of this study#[ Extensive comparisons between experimental measurements on polycrystals and
numerical simulation realized using these results show excellent agreement[

Appendix A

Consider an interface between two phases with the same elastic moduli C but undergoing
di}erent transformation strains oin0 and oin1\ respectively[ As discussed by Walpole "0856# and Hill
"0872#\ the stress and strains tensors are discontinuous across the interface\ and their jumps are
related together by interfacial operators[ With the perfect bonding assumption\ the displacement
and the interfacial traction across the interface must be continuous^ that is

ðuiŁ � u1
i "r¦#−u0

i "r−# � 9 "A0#

and

ðsijŁnj �"s1
ij"r¦#−s0

ij"r−##nj � 9 "A1#

where ni is the unit normal to the interface from the "−# side to the "¦# side[ At an arbitrary point
r"xi# of the interface\ the compatibility condition dui � ui\j dxj and the continuity of displacement
along the boundary impose the relation

ðui\ jŁ dxj � 9 "A2#

where ðxŁ � x¦−x− � x1−x0[
Since ni dxi � 9\ eqn "A2# is equivalent to

ðui\ jŁ � u1
i\ j"r¦#−u0

i\ j"r−# � linj "A3#

By symmetrization the jump of strain is obtained as

ðoijŁ � o1
ij"r¦#−o0

ij"r−# � 0
1
"linj¦ljni# "A4#

li is a proportionality vector which can be evaluated in terms of strain components in both sides
of the interface using eqn "A1# and the following behavior]

s1
ij"r¦# � Cijkl"o1

kl"r¦#−oin1
kl "r¦## "A5#

and

s0
ij"r−# � Cijkl"o0

kl"r−#−oin0
kl "r−## "A6#

This leads to the relation

ðoijŁ � PijklCklmn ðoin
mnŁ "A7#
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where P is the interfacial operator depending on the unit normal to the interface and elastic moduli[
According to Hill "0872#\ P has the following expression]

Pijkl �
0
3
"K−0

ik njnl¦K−0
jk ninl¦K−0

il njnk¦K−0
jl nink# "A8#

K−0 denotes the inverse to the Christo}el|s matrix K de_ned by

Kik � Cijklnjnl "A09#

From eqns "A5#Ð"A7#\ the stress jump across the interface is given by

ðsijŁ � −Qijkl ðoin
klŁ "A00#

where

Qijkl �"Iijmn−CijpqPpqmn#Cmnkl "A01#

For isotropic elasticity\ with Lame� constants l and m\ Q is given by

Qijkl � 1m 6Fijkl¦
l

l¦1m
"dij−ninj#"dkl−nknl#7 "A02#

with

Fijkl �
0
1
"dik−nink#"djl−njnl#¦

0
1
"djk−njnk#"dil−ninl# "A03#

Appendix B] Interaction matrix for CuAlBe single crystals

For CuAlBe alloys the vectors n?\ m and the scalar ` describing the transformation can be found
in Entemeyer "0885#[ ` is taken equal to 9[11 and the unit vectors n?p\ mp for each of the variants
p "p � 0Ð13# are given in Table B0[

Concerning the mechanical properties\ elastic behavior is assumed to be isotropic with Young
modulus E equal to 67 GPa and Poisson|s ratio equal to 9[2[

A _rst information about variant interactions can be deduced from pure compatibility conditions
based on the incompatibility operator Inc "see Section 1#[ Applied on a piecewise uniform trans!
formation strain "oTp\ oTq# and an unknown interface normal Nk\ the incompatibility tensor h is
given by

hij � −eikmejln"oTp
mn−oTq

mn#NkNl "B0#

Since compatibility means hij � 9\ the equation

−eikmejln"oTp
mn−oTq

mn#NkNl � 9 "B1#

has to be solved\ that is to say _nd N\ for a given set of "oTp\ oTq#[ The solution of eqn "B1# exists
only if

Det"oTp
mn−oTq

mn# � 9 "B2#

which is equivalent to the condition "Hill\ 0879#]



N[ Siredey et al[ : International Journal of Solids and Structures 25 "0888# 3178Ð32043201

Table B0
Unit vectors n?p\ mp for variants p of CuAlBe alloy[ The value of "an\ bn\ cn# is "9[057\ 9[577\ 9[694#^ the value of
"am\ bm\ cm# is "9[010\ 9[567\ 9[614# "Entemeyer\ 0885#

Variant p Normal to habit plane n? Displacement direction m

0 −an bn cn −am −cm bm
1 −an cn bn −am bm −cm
2 an bn cn am bm −cm
3 an cn bn am −cm bm
4 −bn −an cn cm −am bm
5 −cn −an bn −bm −am −cm
6 −bn an cn cm am bm
7 −cn an bn −bm am −cm
8 −an −bn cn −am cm bm

09 −an −cn bn −am −bm −cm
00 an −bn cn am cm bm
01 an −cn bn am −bm −cm
02 cn −an bn bm −am −cm
03 bn −an cn −cm −am bm
04 cn an bn bm am −cm
05 bn an cn −cm am bm
06 bn −cn an −cm −bm am
07 cn −bn an bm cm am
08 −bn cn an cm bm am
19 −cn bn an −bm −cm am
10 −cn −bn an −bm cm am
11 −bn −cn an cm −bm am
12 cn bn an bm −cm am
13 bn cn an −cm bm am

oTp
mn−oTq

mn � 0
1
"lnNm¦lmNn# "B3#

where l is a vector[
From pure kinematical considerations\ one gets information about compatibility between two

variants[ Nevertheless eqn "B2# does not evaluate the elastic interaction if compatibility is not
satis_ed[

On the other hand\ the matrix Hnm introduced in Section 3 corresponds to a quantitative
description of variantÐvariant interactions[ Due to the symmetries appearing in the transformation
strain\ the calculation of the determinant and of the terms of the interaction matrix have been
restricted to H0p and Det"oT0−oTp# terms "p � 0\ 13#[ Table B1 presents the values obtained for
Det"oT0−oTp# and the minimized H0p terms[

For this evaluation of minimum of interaction matrix and corresponding domains interface
orientation\ the following numerical method has been used] testing various orientations and for a
given set of them\ looking for the minimum "or the minima# of corresponding interaction matrix[
This was done for unit normal vectors lying in the half space "ð099Ł\ ð909Ł\ ð0Þ99Ł and
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Table B1
Results of study of interacting variants "0\ p#[ Study of incompatibility by Inc operator or corresponding value of
Det"oT0−oTp#^ comparison with the calculated minimum value of interaction matrix Hnm and corresponding unit normal
to domains interface

Interacting
variant with Minimum of Normal to the domain interface
variant 0 Det"oT0−oTp# H0p "MPa# ðN0\ N1\ N2Ł

0 9 9 * * *
1 9 7[68×09−6 −9[0585 9[5858 9[5856
2 9 9 0 9 9
3 9 9 9 9[696 9[696
4 3[00×09−4 0[11×09−2 −9[616 9[574 9[945
5 1[38×09−2 9[61 9[695 9[057 −9[577
6 9 9 9[696 9[696 9
7 1[30×09−2 9[60 −9[695 9[057 9[577
8 9 9 9 0 9

09 6[98×09−4 2[75×09−1 9[010 9[614 −9[567
00 9 9 9 9 0
01 −6[98×09−4 1[16×09−1 −9[011 9[568 9[613
02 1[27×09−2 0[95 9[010 9[614 −9[567
03 9 9 −9[696 9[696 9
04 1[33×09−2 9[77 9[010 9[614 −9[567
05 −3[00×09−4 0[11×09−2 9[574 9[616 9[945
06 −1[33×09−2 9[46 9[010 9[614 −9[567
07 6[70×09−5 6[96×09−4 −9[438 9[939 −9[724
08 −1[30×09−2 9[28 9[011 9[616 −9[565
19 9 9 9[696 9 9[696
10 9 9 9[696 9 −9[696
11 −1[27×09−2 9[44 9[010 9[614 −9[567
12 −6[70×09−5 2[22×09−3 −9[724 9[930 9[438
13 −1[38×09−2 9[36 9[010 9[614 −9[567

ð990ÞŁ\ ð909Ł\ ð990Ł#[ The research had been done in seven steps[ After sweeping the half space
with a 19> angle step\ minima are stored[ For each minimum a new sweep is made with successively
an 7> angle step from −19Ð¦19> around the minimum\ then a 3> angle step from −7Ð¦7> around
the new minimum[ The same operation is repeated for 1\ 0 and 9[4> angle steps[ Finally\ because
it was found that some minima are very deep\ value of interface orientation is precise with 9[0>
step[

From values presented in Table B1\ some concluding remarks may be done]
, First\ one can distinguish compatible variants and incompatible variants in the sense of

incompatibility operator[ In the case of compatible variants\ it is possible to _nd an interface
orientation for which interaction matrix\ that is to say interaction energy\ is null[ The involved
variants are] 0\ 1\ 2\ 3\ 6\ 8\ 00\ 03\ 19 and 10[ This very good agreement between incompatibility
operator and interaction energy tends to prove the suitability of the thermodynamical approach
of the material behavior developed in this paper[
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, Moreover one can note the existence of two kinds of incompatible variants[ Some of them
may be called weakly incompatible variants whose interaction matrix has a low value[ This is the
case for variants 4\ 09\ 01\ 05\ 07\ 12 for which H0p is lower than 9[914 MPa[ The other variants
should then be designed as strongly incompatible variants with respect to variant 0[ For these
variants "5\ 7\ 02\ 04\ 06\ 11\ 13#\ the value of minimum of H0p is higher than 9[2 MPa\ that is to
say at least one order of magnitude higher than the value of interaction matrix for the weakly
incompatible variants[ In a previous paper\ Patoor et al[ "0885# proposed from experimental results
on CuÐZnÐAl such separation in two kinds of interaction[ In the case of weak incompatible
variants\ they took for the interaction matrix Hnm about one order of magnitude lower values
compared to the ones for strong incompatible variants[

Even if value of Det"oT0−oTp# is meaningless if di}erent from zero\ a good correlation appears
between low value of this quantity and low value for interaction matrix\ while the same remark
can be made for high values[

, Finally\ one can note the existence of preferential orientations for the interface plane[ For
instance\ unit normal ð9[010\ 9[614\ −9[567Ł corresponds to interface with minimum energy for
many variants[
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