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Abstract

A micromacro thermomechanical modelization of grain behavior of a polycrystalline shape memory alloy
is presented. This model, based on thermodynamical approach and identification of stress sources, takes
into account experimental observations of the transformation microstructure. Because plates of martensite
are usually observed to appear in domains, similar to subgrains, we show that determination of average
global fraction of martensite is not sufficient to describe grain behavior. A better approximation is done by
taking an average fraction of martensite in each domain as internal variables. With these parameters a full
description of evolution of material can be made. We point out that free energy of the material depends on
an interaction matrix between martensites. Moreover the calculation of this matrix for CuAlBe alloys allows
one to determine the interface between domains. The results of this study are used to model the whole
behavior of the polycrystalline material with a self-consistent method. © 1999 Elsevier Science Ltd. All
rights reserved.

1. Introduction

The thermomechanical behavior of solids undergoing martensitic transformation has been
studied for many years. These materials may be divided into two classes according to the presence
of plastic flow (Cohen et al., 1979; Christian et al., 1995):

e in Shape Memory Alloys (SMA), no (or negligible) plastic flow occurs and the main mechanism
corresponds to the formation of martensitic plates with given eigenstrains. The elastic behavior
of both phases is nearly the same;

e in the case of Transformation Induced Plasticity (TRIP), internal stresses are related with the
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transformation and induce plastic flow of the parent phase which in turn modifies the trans-
formation conditions. In addition, the plastic behavior of such a two phase material appears
highly heterogeneous since, in that case, the yield stress of the product phase (martensite) is
several times higher than that of austenite.

SMA polycrystals present special industrial interest because of their subsequent super-
thermoelasticity (Krishnan et al., 1974) and so have been studied by many authors. To model their
behavior, various approaches have been used. At the microscopic level, James et al. (Chu and
James, 1995; Abeyaratne et al., 1996) have extended the concept of Weschler et al. (1953) to more
complex transformation microstructures corresponding to minima of the free energy. In that case,
the polycrystalline aspect is ignored and dissipation is not allowed so that some aspects of the
overall behavior is not reproduced. The thermomechanical behavior may also be obtained in the
framework of Generalized Standard Materials using the average volume fraction of martensite
and the mean transformation strain over the volume of martensite as internal variables; see for
example, Bekker and Brinson (1997), Boyd and Lagoudas (1996), Delobelle and Lexcellent (1996),
Falk (1980), Leclercq and Lexcellent (1996), Miiller and Xu (1991), Peyroux et al. (1996), Raniecki
and Lexcellent (1994), Sittner et al. (1996), Stalmans et al. (1995), Tanaka et al. (1986). In that
case, some difficulties occur to account for the interaction energy between austenite and martensite
and the determination of the evolution of the mean transformation strain becomes complicated.
In that case, the fluctuations of the transformation strain field inside the martensite are not taken
into account. Micromechanical studies starting at the level of the martensitic plate where the
transformation strain may be taken as uniform, associated with scale transition theories, have been
more successfully applied to shape memory alloys using a two-phase approach (Sun and Hwang,
1991) or, for a single crystal, using Mori-Tanaka scheme (Sun and Hwang, 1994). In both cases,
the polycrystalline microstructure is absent and in the case of Sun and Lexcellent (1996), the
variant-variant interaction model does not allow spatial organization of the transformation micro-
structure nor accommodation by orientation of the variant—variant interfaces. Polycrystalline and
texture effects are accounted by Bhattacharyan (1996) with a purely kinematical point of view
considering the change of symmetry that is produced during the transformation from austenite to
martensite. This approach is able to determine the polycrystalline recoverable strain but no
information is given on the overall behavior, in addition a stress free microstructure is assumed
inside each grain. In a previous study, Patoor et al. (Entemeyer et al., 1995) use a self-consistent
model for the polycrystalline problem and an interaction matrix for the variant interactions
allowing some self organization of the transformation microstructure. However this matrix needs
experimental identification of some material parameters.

For a polycrystalline Representative Volume Element (RVE) the overall behavior strongly
depends on material free energy composed of (Wollants et al., 1979; Warlimont, 1976):

e a chemical part due to the lattice change related to the phase transformation;

e an interfacial term associated with the creation of interfaces between austenite and martensite.
This part is usually negligible for classical SMA;

e an clastic part related to imposed boundary conditions and internal stresses associated with inter-
and intragranular incompatibilities of the transformation strain field.

Grain boundaries are obstacles for the expansion of martensitic plates over the RVE so that
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interactions between transforming grains lead to the development of stress and strain fluctuations at
the grain scale. The resolution of such a problem has been examined for elastic—plastic polycrystals
(Lipinski and Berveiller, 1989). The self consistent model developed in this context will be recalled
in Part IT and extended to SMA.

Inside the grains, stress and strain fluctuations also appear due to the formation of a trans-
formation microstructure. The shape of the elementary transformed volume corresponds generally
to a thin plate. Moreover, for the whole microstructure, one has to take into account the spatial
distribution of these plates and their local interactions. Contrary to grain boundaries, the interfaces
related with transformation (austenite-martensite and martensite—martensite interfaces) are highly
mobile and must be considered as internal variables describing the transformation microstructure.

The overall thermomechanical behavior of a grain is clearly sensitive to these two microstructural
levels: plate scale and spatial distribution of plates. Nevertheless for modelling a simplified re-
presentation of the changing microstructure has to be introduced. From both a pure kinematical
approach and the expression of the free energy, the volume fractions of each variant n{f,,n = 1-
24} appear as the adequate set of internal variables for the description of the martensitic trans-
formation as well as for that of the reorientation mechanism (Patoor et al., 1987).

The derivation of the thermomechanical constitutive relation of the single crystal embedded in
the polycrystal follows from classical approach in the framework of thermodynamics of irreversible
processes since creation (or shrinkage) of martensitic plates proceeds with (low) intrinsic dissipation
as observed on single crystal experiments. These experiments (Grujicic et al., 1985; Buathier, 1995)
show two types of growing of martensite area. In well prepared single crystal, the transformation
is related with the motion of a single interface between austenite and martensite corresponding to
the growing of a single plate. In that case, the interfacial motion is thermally activated and lies
between 10~ °and 10~ m/s. When more than one nucleation site exists (in ordinary single crystals
or polycrystals) the transformation progresses by creation of new plates. Then the direct or reverse
transformation proceeds quasi instantaneously (plates are formed with near sound velocity), the
framework of time independent inelasticity seems to be appropriate (Rice, 1971).

In that case, the driving force on an internal variable (here {f,}) has to reach a critical value
before transformation takes place. This is equivalent to introduce a dissipation potential. In the
first part of this paper, the observed transformation microstructures are presented and analysed in
terms of incompatibilities considered as sources of internal stresses. In the most common case, the
observed microstructure corresponds to the formation of several domains such as subgrains in
which only one variant seems to be activated. The boundaries between these domains have to be
described by additional internal variable X;. In the second part, the free energy is decomposed into
two terms depending only on the loading parameters (£, T) and the set of volume fractions of
martensite variants { f,}, and a third term depending on the whole transformation strain field with
internal variables (X, {f,}). This last term is developed for a microstructure with domains and the
additional internal variables (X;) are deduced from the minimization of the corresponding free
energy term. Since the remaining internal variables are linked together by the definition of the
volume fractions (0 < ) f, < 1), the related physical constraints are taken into account using the

Kuhn—Tucker conditions in the derivation of the corresponding driving forces. This allows one to
find, in a classical way, the evolution of the internal variables { f,} and the corresponding overall
response for the grain. The model leads to an interaction matrix between variants and will be
applied to a CuAlBe alloy.
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In chapter 6, experimental results on CuAlBe single crystals are presented and used to identify
the material parameters introduced during the modelization.

2. Different transformation microstructures observed for stress induced martensitic phase
transformation

Tensile tests were performed on polycrystalline CuAlBe wires. Figure 1 presents the evolution
of stress assisted martensitic transformation during loading (Buathier, 1995). One can note that
phase transformation occurs inside grains with non randomly spatial distribution. In fact, two
types of martensitic plates arrangement can be distinguished in each grain.

2.1. Morphology A

The first plates distribution is shown in the area A and is the most common feature. A grain is
divided into substructures named domains. Each domain of volume ¥V, and boundary 0V, is
defined as a mixture of untransformed matrix and parallel plates of martensite corresponding to
the activation of only one variant. Other variants encountered in the grain stand mainly in other
domains. During loading, phase transformation proceeds with creation of new plates of one or
more variants; however these new variant plates stay in the previous domain. Three scales of
interfaces, where incompatibilities and hence sources of stresses exist, can be determined.

(1) Inside domain interfaces have to accommodate lattice differences between austenite and
martensite. This is actually realized by martensitic transformation itself, as it does not differ in this
material from that obtained from the Weschler et al. theory (1953). This result was emphasized by
El Amrani Zirifi (1994) in a nearly identical material: CuZnAl alloy. He found that, for this
material where thermoelastic martensite also exists, and with the hypothesis of very few plasticity,
homogeneous and isotropic elasticity, no temperature effect, W.L.R. strain transformation field &”
fills quite well compatibilities conditions. These were given by Kroner (1980) as

Ince” =q (1)
which, in the case of a piecewise uniform transformation strain field, leads to
T T
Inc gij = _Eikmejlngmnnknl = ’7[/ (2)

where €, is the permutation tensor, #; the unit normal to the interface and » the incompatibility
tensor. The condition of compatibility is then

n=0 3)

The condition of compatibility is automatically satisfied if n is the normal to the habit plane.

The interface corresponding to the habit plane between martensite and matrix can thus be
considered as compatible and no stress sources are produced there.

(2) Plates of martensite are not infinite and their tips lie in the domain boundaries. Moreover,
at this place, plates of martensite of one domain meet either plates of another variant of the other
domain or grain boundaries. So, interfaces between domains have to accommodate different
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Fig. 1. Various photographs taken during a tensile test of a polycrystalline 11.5 wt%AIl-0.5 wt%Be—Cu alloy at room
temperature and showing the evolution of plates of martensite in two grains: A and B. Strain is (a) 0.71%, (b) 1.69%,
(c) 4.11%.
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transformation strains. It is reasonable to expect from this situation some possible incompatibilities.
These incompatibilities will induce internal stresses and contribute to the free energy of the material.

Due to the characteristics of martensitic transformation, interfaces appear as a type of quasi-
dislocation wall. Then, at this scale, the domain frontier presents fluctuations due to stacking of
martensite and matrix areas. Near the interface, the stress field should present such fluctuations.
On the other hand, as for the case of stresses created by infinite or limited dislocation walls, we
assume that fluctuations reduce far from the interface and the stress field due to incompatibility
becomes more uniform. Such an interface between domains is able to move according to the
external loading or to the internal stresses and will be another degree-of-freedom for the trans-
formation microstructure.

(3) Finally one has to take into account the meetings of domains or plates of martensite with
grain boundaries. These are expected to be other incompatible interfaces whose main characteristics
are to be given, at the opposite of domain boundaries inside a grain. At a more macroscopic point
of view, this phenomenon can be viewed as part of the problem of intergranular accommodation
during loading. For that reason, these sources of stress can be treated with the self-consistent
method applied to polycrystalline material which will be developed in Part II.

For single crystal study, the only incompatibilities to be taken into account are the ones created
at the domain boundaries; their modelization will be the aim of Part 1.

2.2. Morphology B

The second observed morphology or martensitic transformation is presented in area B of Fig.
1. Plates of two variants of martensite cross each other. Special attention has to be paid to the
meeting region where some striated features occur as a consequence of a tentative of accom-
modation. During transformation, energy is then stored inside these regions whose precise descrip-
tion has to be done for complete modelization.

2.3. Discussion

One can see from experiments that third order internal stresses are clearly dependent of the
intragranular substructure, not only in terms of shape, orientation and crystallography for each
variant plate, but also in terms of spatial distribution of these plates. As the thermomechanical
behavior of material depends strongly on internal stresses, the models need to take into account
these substructures.

A classical way to solve the problem of thermomechanical behavior of composite material is to
use Eshelby—Kroner or Kréner/Mori-Tanaka approaches (Mura, 1993). These types of models
are based on inclusions of phase 2 (e.g. martensite) embedded in a matrix phase. For morphology
A, this approach cannot be used directly, since each plate of martensite is considered as a unique
inclusion inside a corrected matrix with uniform transformation strain. This is the case neither for
morphology A nor B. Moreover no spatial correlations should exist between inclusions: this
excludes the reorientation mechanism between variants commonly observed. Finally inclusion
distribution does not appear in the model which (implicitly) assumes a disordered substructure.
Thus, a specific micromechanical model has to be developed in order to take into account the
transformation microstructures.
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Such an approach, also based on Eshelby—Kroner and Mori-Tanaka model, considers as
inclusions not the plates themselves but domains of volume V), as defined in the case of morphology
A: mixture of matrix and plates of one variant of martensite. Such an approach has been developed
in the previous studies of Patoor et al. (Entemeyer et al., 1995; Entemeyer, 1996; Patoor et al.,
1996, 1997) presented in the Introduction. They show that, with respect to classical models of
Delobelle and Lexcellent (1996) or Stalmans et al. (1995) some additional internal parameters
should be taken into account. These parameters are related to the set of {f,}. These variables can
be obtained from experimental measurements and then no fitting parameters are required. On the
other hand, minimization of energy for surface orientation between inclusions and surrounding—
constituted by another domain—is made. Using the self-consistent approach, the model has been
applied to uniaxial loadings of polycrystals. The obtained results agree quite well with experiments.

This model still requires some input parameters obtained from metallurgical observations. The
model developed here, based on a thermodynamical study of energy created by incompatibilities
at the boundary domains will attempt to be released from these types of input data.

In the case of morphology B, the modelization of internal sources of energy needs a detailed
description of the crossing of martensitic plates. This complex problem will not be discussed in the
frame of this study.

3. Free energy related to martensitic transformation in a grain

In this part, we consider a grain with volume J and boundary 0} as a representative volume
element (RVE). The stress free austenite matrix is considered as the reference state. Thermal strains
and thermomechanical coupling are neglected and homogeneous elasticity is assumed.

When transformation occurs, some parts v; (i = 1-N) of V' undergo uniform transformation
strains ¢, The field &’(r) is called the transformation strain field. From experimental crys-
tallographic measurements and data on invariant lattice transformation, the Wechsler et al. (1953)
phenomenological theory allows one to determine the characteristics of this transformation. By
this way, it is possible to forecast orientation relations between matrix and martensite, habit plane
normal n’, displacement direction m and displacement magnitude g, illustrated in Fig. 2. The
transformation strain is then expressed for a typical variant by

3
>
S

habit plane
>

Fig. 2. Deformation of a matrix volume element into a martensitic one.
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&l = S(mn+mmn))g (4)

For the sake of symmetry of matrix crystalline lattice, many equivalent systems are implied in
martensitic transformation. There are 24 of these so-called variants in CuAlBe alloys.

It is assumed that the transformation strain field is piecewise uniform, corresponding to one
given value of the transformation strain over the whole volume of each martensitic plate and being
zero inside the matrix.

The free energy of the austenite—martensite system results from:

e the elastic strain energy with density w(r),
a(r) = 50,(r)e(r) (5)

o is the local stress field created by the loading conditions on 07 and by the incompatibilities of
the ¢’ field;

e the crystallographic (or chemical) free energy with density ¢(r);

e the interfacial energy related with austenite—martensite interfaces as well as martensite—martensite
ones. These last terms are usually neglected in the case of thermoelastic shape memory alloys.

Other sources of free energy (points defects, dislocations,...) are neglected and the ther-
momechanical loading process is assumed to be slow enough so that the temperature remains
uniform over the RVE.

For a unit volume V, the free energy ® is given by

Vo = J w(r) dr+J o(r)dr (6)

Since ¢(r) is uniform in the austenite (= @, over the volume V) and uniform inside the martensite
(= @y over the volume V), the second term in eqn (6) may be written as

J o) dr =V oa(T)+Vy - ou(T) (7
so that

1

VJ p(r)dr = f*om(T)+ (1 =) oa(T) ®)

= @a(T)+ (o — @A) f ©)

where = (Vy/V) is the total volume fraction of martensite.
In the vicinity of the equilibrium temperature 7,, where ¢, = ¢y, the chemical part of the free
energy is usually linearized by

1
VJ @(r)dr = B(T—=T,)f (10)

where B and T, are material parameters.
The elastic part of the free energy
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1
W=y f 755 (1) dr (1)

may be transformed using kinematical conditions inside V:

&y (r) = ug(r) = &5(r) +e5(r) (12)
and boundary conditions on dV-
From (11) and (12),
1
W = ZVL o, (N [u; (r)—efi(r)] dr (14)
By partial integration and taking into account boundary conditions (13), (14) is reduced to
1 1
W=_%,E;—~| a,;(rne;r)dr (15)
200 2 "
where
1
X = v Va,:,-(r) dr (16)

represents the overall stress.
We decompose the stress ¢ into the macroscopic stress X and the internal stress 7 (only related
with the &’ field):

c=X+1 (17)
so that

Tij,/(r) =0 (18)
and

1

% Vr,-j(r) dr=20 (19)
Using uniform elasticity with moduli C, (15) is written as

1 1
W= E(Ei/ - E,f) Czjjkl(Ekl - EkT/) - 2Vj Ti;(r)&f(r) dr (20)
V

where

1
E;:J ey (r)dr (21)
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represents the overall transformation strain and the second term of (20) is only related with the
transformation strain field &’ (r).
Since ¢” is uniform over the different martensitic domains v,, one has

. . Uy
and for the chemical energy:

B(T—Ty)f=B(T—To) )./ (23)

Finally, the Helmholtz global free energy ® depends on control parameters {E, 7} and trans-
formation field {&¢’}. Its expression,

1 1
OE, T, {e"}) = E(Eljj_ EDCyu(Ey—Ef) +B(T—T,) an - 2VJ T, (r)ef(r) dr (24)
n v
or
1 1
O(E, T, {e"}) = 5 (Ey— E3) Copa By — E)) + B(T—=Tp) 2 —ZET?,'S?% (25)

with ¢”" the transformation strain for variant n defined in eqn (4), needs the determination of the
mean internal stress 7" over the volume v, of variant n.

1
T = UJ 7,;(r)dr (26)
If the elastic interaction energy W,,, expressed by
1
W, = Njyrq(r)sgm dr @7

vanishes, the free energy ® of V' depends only on the control variables £ and T and the internal
variables f,: ® = ®(E, T, f,) irrespective of the microstructure of the ¢’ field.

This is obviously not the case due to the incompatibilities of the transformation strain field.

In the next part, we derive an expression for this interaction energy W;, for a domain type
microstructure using the fact that the domain interfaces are mobile without dissipation.

4. Intragranular interactions between variants forming domains

For a given state of transformation characterized by the set of volume fraction {f,}, the
interaction energy Wi, =(1/2V) [, 7,;(r)e/;(r) dr depends on the transformation microstructure, i.e.
the ¢’ field as previously mentioned.
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In this work we focus on the case of intragranular microstructures presented in Fig. 3 where the
active variants define austenite—martensite domains. Each domain has a volume V, and the
martensite with transformation strain ¢’ occupy a volume v,. In the grain, each domain, or island,
ends at grain boundary in such a way that these domains meet the other ones by only a side. This
interface between two domains (n, m) is supposed to be a plane with unit normal N. From Fig.
3 and notation previously introduced, we define:

e the volume fraction of each domain n: F, = (V,/V) with the relation

YF, =1 (28)

e the volume fraction of variant n over the volume V- f, = (v,/V);
e the volume fraction of variant n inside the corresponding domain V,,:

Uy Ja

L 29
“=v,~F 29
e the mean transformation strain over V,,:

=1 1 Tn n U” n

&ij = 7 e dV =g v = ¢;"C, (30)

n I/” n

e the overall mean transformation strain over V:

El =Y fel" (3la)
or

Ej =) Fz (31b)

This global transformation strain E” can be described either by (31a) or by (31b), the last equation
being more adapted for the estimation of the internal stresses. Since the interface between austenite

Fig. 3. Representation of the RVE showing the partition of volume V into austenite/variant i of martensite domains V..
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and martensite inside the domains are compatible, the sources of internal stresses (and consequently
of the internal energy) are located on the boundaries between domains corresponding to the tip of
martensitic plates. These boundaries may be considered as quasidislocation walls with long range
internal stresses.

As a consequence, the stress field fluctuates, weakly inside the domains and presents jumps
across the domain interface. Therefore, it may be evaluated using interface operator techniques,
with the jumps of mean transformation strain across the interfaces as sources of incompatibilities.

The interaction energy depends now on the given set of volume fractions {f,} and the micro-
structural parameters of the domains reduced to the volume fractions {F,} and the normal to the
interface {N""}.

The progress of transformation results from creation of new plates inside domains; it may be
assumed that this mechanism leads to dissipation according to the attenuation of the elastic waves
related with the bursts of the plates. On the contrary, for proportional loading, one can assume
that the domains microstructure evolves without dissipation so that the corresponding internal
variables ({F,}, {N""}) should minimize the corresponding free energy term W,,,.

According to these assumptions the interaction energy becomes

1
I/I/inl = EZ 118;’17:'1/' (32)
where
= 1
T = v 7,;(r)dr (33)
nJv,

is the mean internal stress inside the domain V,. Using the definition of the mean transformation
strain over this domain given by eqn (30), (27) may be transformed in

1
Wine = 5 > F.&T; (34)
or
1 =N Tn
I/I/im = ianfzj )18ij (35)

The relations concerning the internal stresses 7" are deduced from the zero mean value conditions

(19)
Y F =0 (36)

and, for each interface N,
T = T — Q& — &) (37)

where the interface operator Q" is developed in Appendix A.
From (36) and (37), the stress inside each domain m is given by
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T = Z F,O0(&0— &) (38)

and the interaction energy becomes

1
Wi = = ) 3 FyFod™ (39)
with
A" = (E =) Qi — (40)
Here, the following properties of Q are used:
O(N) = O(—N)
sz/k/ = Qkhj/

which assure the definite positivity of the 4™ terms.

When the transformation occurs under large applied stress (either by increasing stress at a given
temperature or by cooling at a constant applied stress), experimental observations point out that
mainly two principal variants grow up (Entemeyer, 1996).

In that case, the interaction energy reduces to the simplified form

Wi = — F,F,,(&"—&") Q"™ (&"—&") (41)

which has to be minimized with respect to F, (since F,, = 1 —F,) and N"; n and m denotes the two
active variants.
Using eqns (28)—(30), (41) is explicitly given by

Wi = — %Fn(l —F,) <‘;’;8T’“ — lfﬂFn 8“’) o™ <{%8T” — lj:an 3””) (42)
The derivation of W,,, with respect to F, leads to
: aI/Z = e gimgmen s gemmgre) @3)
whose annulation gives the condition
nlly = Enly, (44)
where
a? = e™Q"e™ (o, p = n,m) (45)

depends only on the unit normal to the interface between the two domains » and m.
The corresponding minimized interaction energy is now

1

1
7fnﬁn T(amgm - anSTm) Qnm (amng - an'ng) (46)

I/I/int = - 2
n*m

or, introducing the interaction matrix H"" = (1/a,a,,)(a,&"™" — a,e") 0" (a,.e"" — a,e™),
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mt = f;1Hnlﬂfm (47)

Since the terms ¢”"Q""¢™, F, and (1 — F,) are always positive, the stability of the partial equilibrium
is satisfied.

Equation (46) has to be minimized with respect to the orientation of the interface for two given
variants. This can be performed numerically. It is worthwhile to point out that this matrix depends
only on the elastic behavior of the material and the given set of transformation strains {&'}.

For CuAlBe alloys, the matrix H has been calculated and the results are discussed in Appendix
B.

In the case where more than two variants are activated, we assume that the interaction energy
is still described by the same type of relation so that

1
I/Vint = - EZﬁ1Hnmfm (48)

As discussed previously, this is an approximation of the multiple interaction between domains.
Nevertheless, as it can be observed in experimental works (Entemeyer, 1996), this approximation
is the best for high stress induced transformation where two principal variants are activated.

5. Expression of the free energy and behavior of a grain

Once the interaction energy term is obtained, the Helmholtz global free energy @ per unit volume
of a grain is from (24) and (48):

O, T, {f,}) = f(E E"YC(E—E")+B(T—Ty)f+ ~ ZH”’”ffm (49)

n,m

2

E and T are the control variables and the set {f,} appears as an internal variable with the physical
constraints

f, =0 foreachn (50a)
Y f, <1 for the whole volume fraction (50b)
The overall transformation strain E” is given by eqn (22) and f = Z f,. The terms C, B, T,, ™" and

H" are material constants.
The Gibbs free energy W(Z, 7, {f,}) is deduced from (49) by the Legendre transformation

L,E;=0+Y Gh
so that
1 1
Y, T, {}) = EEUCJ/J Tu+Z,E[—B(T—T,)f— 3 Y H"fofn (52)

n,m

or
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1 1
WET, D) = 3 2 Coal St Sl = BT=T) S fo— 5 X H™f (53)

nm

The physical constraints (50) are taken into account using the Kuhn—Tucker conditions in order
to define the thermodynamical forces #, on each volume fraction f;.

To the (n+1) conditions (50), n+1 Lagrange multipliers 4, and 4, are introduced. They are
defined by

QO fi—D=0 (54a)

A(—f,—0) =0 foreach n. (54b)
The Lagrangian Z(Z, T, {f,}) of the complementary free energy ¥ is defined by

LEy T, i) =Y Ey ToAf}) =20 QS =D = 2(— 1) (55)
The driving forces &, on the volume fraction f, is defined and given by
T, = oL _d% Ao+ (56)
n — aﬁl - a}("1 0 n

and, from definition (53) of 'V,

T, =2l =Y H"f,,—B(T—T,) =+, (57)

m

For time independent behavior, the transformation may progress on a current variant n, i.e. f, # 0,
only if the driving force reaches a critical value % (f,) depending on the current state of trans-
formation. This hypothesis corresponds also to the dissipation process occurring during the
martensitic transformation and described by a dissipation potential W*.

Now, the criteria for transformation on a variant n—f, > 0—is given by

el =N H"™f,,—B(T—Ty) — o+ 2y = F, (58)

m

and the following conditions on the Lagrange multipliers must be satisfied:

by = =Sl H" o+ B(T—To) + o+ F >0 (592)
o =S, =S H™f, — B(T—Ty)+/y—F > 0 (59b)

As soon as a variant reaches a volume fraction equal to unity or if the global volume fraction
reaches one, the constraints (59) limit the transformation even if conditions (58) are satisfied.

The reverse transformation—f, < 0—may happen if the following conditions are satisfied on
variant n:
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T =Y H"fo,— B(T—To)— 2o+ 4, = — 7, (60)

m

and Lagrange multipliers have to satisfy

D = —Zel Y H" foy 4+ B(T—To) + g —F = 0 (61a)
o = 46l =Y H"f,,— B(T—Ty) + 1y +F5 = 0 (61b)

m

Once the criterion for direct or reverse transformation rates f, is satisfied, the coherency relation

G, =F (62)
or here

Z 0F 5 4 o0F, i ,1 _ g 63)

= azi/ ij aT / - n

0fm

allows to determine the evolution of the transformation rates £, for each variant as a function of
the rate of the imposed control variables ¥ and 7.

Because variants # of martensite come from symmetries in the matrix/martensite lattice change,
critical forces %, are reasonably assumed to be identical—%, = % and since for single crystals
the critical force Z© is practically independent of the amount of martensite, % ¢ can be assumed to
be zero.

In that case, (63) reduces to

sg”Z'ij—BT—ZH””’ﬁq =0 (64)

The thermomechanical constitutive equation for the grain is defined by the relation between the
overall stress rate 3, strain rate £ and change of temperature 7"
From the definition (22) of E” and X (16), one gets

zzj/ = Czj/kz(Ek/_Esz) (65)
or

2= Cyy (Ekl ZF "fn) (66)

Multiplying (66) by & yields
8,:7;”12:4U — Tm C[]k/ (E/\/ Z e nf‘) (67)

or using (64)
BT+ Z Hnm_fn = ggm Cij/cl (E/\'/ - Z Slgnﬁ1) (68)

which can be solved for £,
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- _ - . .
Z(H g Cijklgkln)fn = ¢;" Cis by — BT
n

SO

fn = z K™ (85”’ CijklEkl —B T) (69)

m
where
T Tn\ —1
Kilnl — (H}’lm _"_ 8[:1_))1 C,lklgk[n)

Summations are made only on the potentially active variants, i.e. those satisfying the trans-
formation conditions (58) and (59).
Introducing (69) into (66) yields to

le = {Cyju— Z Ciirsers K" 60" Ctr} E. + Z Ciuiel/ K™ B T (70)

n,m n.m

6. Experimental identification of material parameters

Equation (70) together with transformation conditions (58) and (59) describes the ther-
momechanical behavior of an austenitic grain with multivariant transformation conditions.
The material parameters appearing in (70), (58) and (59) are:

—the set of 24 transformation strains {¢""} from which the interaction matrix " can be calculated;

—the elastic behavior defined by tensor C;

—the material constants related with the transformation: coefficient B, equilibrium temperature
T, of austenite—martensite transition and critical forces for austenite-martensite transformation
of each variant n: 7.

These material parameters needed for the determination of the behavior of the single crystal are
deduced from the crystallographic theory of martensitic transformation and from experimental
tensile tests at constant temperature or cooling tests at constant stress.

Since the elastic behavior is assumed identical for both phases, the approximation of isotropic
temperature independent elasticity may be adopted. In that case the shear modulus y and Poisson’s
ratio v are measured during the elastic loading of the austenite.

The crystallography of the martensitic transformation for CuZnAl or CuAlBe alloys were
extensive studied by De Vos et al. (Entemeyer, 1996; De Vos et al., 1978).

The transformation strains given in (4) are deduced from the scalar g and the set of 24 vectors
m® and n* given in the reference lattice of austenite . Knowing the orientation of the y lattice with
respect to the external frame, the set of the 24 transformation strains can be calculated for CuAlBe.

The knowledge of the elastic behavior and the transformation strains allow to determine com-
pletely the 24 x 24 terms of the interaction matrix H, whose terms are given and discussed in
Appendix B. As discussed in Section 2, this matrix constitutes only a simplification (smoothing)
of the real microstructure. For sake of numerical simplification or in order to take into account
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additional physical phenomenon, this interaction matrix can be simplified or completed by
additional terms.

The material parameters B, T, and the critical forces #°¢ are determined from the experiments
on single crystals oriented to produce a single variant under uniaxial stress X;;. In that case the
interaction term H . f vanishes since H" = 0.

During loading, austenite — martensite transformation starts with the creation of one plate of
martensite, corresponding at the beginning to f, = 0,50 )_f, # 1. Definition of Lagrange multipliers

given by eqn (54a) leads to the condition 4, = 0. Transformation condition (59a) is now
e —B(T—T,) < F° (71)
At the end of transformation, all the sample is transformed into martensite. Then ) f, = I so

f, # 0. Definition of Lagrange multipliers given by eqn (54b) leads to the condition A, = 0.
Transformation condition (59b) is now

Tl —B(T—T,) = 7°¢ (72)
When transformation progresses, Y f, # 1 and f, # 0, with only one variant active (n = 1). These

conditions lead to 4, = 4, = 0, and condition for the transformation progress yields

3+333T3 —B(T-T,)=7° (73)
For the reverse transformation, transformation condition (60) leads to
T3 —B(T—T)) = —7° (74)

Equations (73) and (74) indicate that the transformation on a single variant in a single crystal
occurs at a constant stress or temperature, which is almost verified in our case (see Figs 4 and 5).

300 T T T T

250

200

150

Stress (MPa)

100

50

0 2 4 6 8 10
Strain (%)
Fig. 4. Influence of a temperature change on the superelastic behavior (7= 18°C and T'= —37°C) on a Cu-16 at.%Zn-
15 at.%Al single crystal (M, = —60°C).
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Fig. 5. Superthermal behavior of a Cu-16 at.%Zn-15 at.% Al single crystal under different constant stress level (¢ = 137
Mpa and o = 187 MPa).

A slight difference of these curves with the model corresponding to the experimental observed
‘hardening’ may be explained by the small strain approximation used in the model. The same
phenomenon appears in the experimental results obtained during cooling at constant stress as
presented in Fig. 5.

The slope of the curves X35(7) or X35(7) given by

dT 7, (75)

allows to find the parameter B. The hysteresis of the transformation curves leads to the critical
1

force 7° = J(Z35 — X5 ;)el; from isothermal tests. Finally from (73) one gets the Ty, value.

Once the material parameters are found, the thermomechanical behavior of each grain of a
polycrystalline SMA is given by (70) and the transformation conditions (58) and (59). These
equations and material parameters can then be introduced in a self consistent scale transition
scheme to get the response of the polycrystal under multiaxial thermomechanical loading
conditions. This will be the aim of another paper, presented as Part II of this study about
polycrystalline SMA behavior.

For the whole stress-temperature range { 7€ [—60°C, 20°C] and X35 € [0, 250 MPa]} martensitic
start and finish temperature M, and M; as well as austenite start and finish temperature 4, and 4;
as functions of X are given in Fig. 6. The quasi constant slope observed justifies the linear

approximation made for the chemical energy in Section 3.
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Fig. 6. State diagram experimentally defined on a Cu-16 at.%Zn-15 at.%Al single crystal from tensile tests using
isothermal and anisothermal loadings. Experimental points called o(7) with T = M, M, A or A; correspond to
transformation stresses found during tensile tests at uniform temperatures. 7(c) correspond to transformation tem-
peratures found during cooling and heating at a constant level of stress.

7. Conclusions

During thermomechanical loading of shape memory alloy single crystals, only one variant is
activated and the transformation progresses by displacement of plate interfaces or by creation of
new plates if nucleation governs the process.

For polycrystals, the mechanism of transformation is quite different due to grain to grain as
well as variant to variant interactions. These interactions induce fluctuating internal and multiaxial
stresses which in turn act on the transformation pattern which corresponds to a multivariant
transformation microstructure organized in domains.

While the transition from the grain level to the macroscopic one may be achieved using classical
self consistent models, this paper describes the thermomechanical behavior of the grain taking into
account these specific microstructures. Usual models where only the variant specific volume
fractions {f,,} or even the whole volume fraction {f} are used as internal variables to describe
the transformation microstructure are not able to take into account the spatial organization of
martensitic plates observed in polycrystals. We show that the interactions between martensitic
variants through the domain formation may be described by an interaction matrix depending only
on the known transformation strains.

In the case of two active variants corresponding to usual situations (Entemeyer, 1996), the terms
of these matrices are evaluated by the introduction of the volume fraction of domains as additional
internal variables. They are calculated assuming equilibrium between domains.
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The experimental determination of the material parameters introduced in the model is performed
for copper-based single crystals. The terms of the interaction matrix are calculated and compared
successfully with a pure compatibility condition. Classification of the variant—variant interaction
is equivalent to the one well-known in physical metallurgy (El Amrani Zirifi, 1994). The results
obtained from experiments and modelization, presented in this paper, are introduced into a
thermomechanical self-consistent model (presented in another paper corresponding to Part II
of this study). Extensive comparisons between experimental measurements on polycrystals and
numerical simulation realized using these results show excellent agreement.

Appendix A

Consider an interface between two phases with the same elastic moduli C but undergoing
different transformation strains ™' and &, respectively. As discussed by Walpole (1967) and Hill
(1983), the stress and strains tensors are discontinuous across the interface, and their jumps are
related together by interfacial operators. With the perfect bonding assumption, the displacement
and the interfacial traction across the interface must be continuous; that is

(] = u;(r*)—ui(r") =0 (AD)
and
[o,1n; = (05(r") —a(r )n; =0 (A2)

where 7, is the unit normal to the interface from the (—) side to the (4 ) side. At an arbitrary point
r(x;) of the interface, the compatibility condition du; = u;;dx; and the continuity of displacement
along the boundary impose the relation

[u;;]dx; =0 (A3)
where [x] = xT —x~ = x*—x".
Since n;dx; = 0, eqn (A3) is equivalent to
[w:,] = uiz,_/(”+) _”il,_/(”i) = A, (A4)
By symmetrization the jump of strain is obtained as
le;] = Si_2j(7’+) _31'_1;'(”7) = %()“inj—i_ ;) (AS)

A; 1s a proportionality vector which can be evaluated in terms of strain components in both sides
of the interface using eqn (A2) and the following behavior:

oy (r") = Ca(et(r™) =& (r™)) (A6)
and
ay(r7) = Cyulen(r-) —el' (7)) (A7)

This leads to the relation

[81']'] = P[jklcklml1 [Siﬁn] (AS)
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where P is the interfacial operator depending on the unit normal to the interface and elastic moduli.
According to Hill (1983), P has the following expression:

P = (Kz/ ”n/+K// nn+ K ”n/+K,/ nny) (A9)

K" denotes the inverse to the Christoffel’s matrix K defined by

Ky = Cijnyny (A10)
From eqns (A6)—(AS8), the stress jump across the interface is given by

[Uzj/] = - sz/k/[gi(n/] (A11)
where

Qi/’kl ( ijmn Cszz/qumn)CnmAI (Alz)
For isotropic elasticity, with Lamé constants A and u, Q is given by

A

Qi = 21 {E/k/+ I+ 2 T~ (0 —mn;) (O —n,(n,)} (A13)

with
Fi = (511( min) (0, —m;ny) + %(5_/1( —nm) (0 —niny) (Al4)

Appendix B: Interaction matrix for CuAlBe single crystals

For CuAlBe alloys the vectors n’, m and the scalar g describing the transformation can be found
in Entemeyer (1996). ¢ is taken equal to 0.22 and the unit vectors n””, m” for each of the variants
p (p = 1-24) are given in Table BI1.

Concerning the mechanical properties, elastic behavior is assumed to be isotropic with Young
modulus E equal to 78 GPa and Poisson’s ratio equal to 0.3.

A first information about variant interactions can be deduced from pure compatibility conditions
based on the incompatibility operator Inc (see Section 2). Applied on a piecewise uniform trans-
formation strain (¢’7,¢’?) and an unknown interface normal N,, the incompatibility tensor 5 is
given by

771'] = —€ym€ jin (Smn /ZZ)N/(N/ (Bl)
Since compatibility means #,; = 0, the equation
- eikmejln (grgr’z mn)NkN/ =0 (Bz)

has to be solved, that is to say find N, for a given set of (¢’7, ¢’%). The solution of eqn (B2) exists
only if

Det(SmH mn) - 0 (B3)
which is equivalent to the condition (Hill, 1980):
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Table B1
Unit vectors n”, m” for variants p of CuAlBe alloy. The value of {an,bn,cn} is {0.168,0.688,0.705}; the value of
{am, bm, cm} is {0.121,0.678,0.725} (Entemeyer, 1996)

Variant p Normal to habit plane n’ Displacement direction m
1 —an bn cn —am —cm bm
2 —an cn bn —am bm —cm
3 an bn cn am bm —cm
4 an cn bn am —cm bm
5 —bn —an cn cm —am bm
6 —cn —an bn —bm —am —cm
7 —bn an cn cm am bm
8 —cn an bn —bm am —cm
9 —an —bn cn —am cm bm
10 —an —cn bn —am —bm —cm
11 an —bn cn am cm bm
12 an —cn bn am —bm —cm
13 cn —an bn bm —am —cm
14 bn —an cn —cm —am bm
15 cn an bn bm am —cm
16 bn an cn —cm am bm
17 bn —cn an —cm —bm am
18 cn —bn an bm cm am
19 —bn cn an cm bm am
20 —cn bn an —bm —cm am
21 —cn —bn an —bm cm am
22 —bn —cn an cm —bm am
23 cn bn an bm —cm am
24 bn cn an —cm bm am
Tp _ o Tq _ 1
Smn Smn - 2()")7Nm + /lmNn) (B4)

where 4 is a vector.

From pure kinematical considerations, one gets information about compatibility between two
variants. Nevertheless eqn (B3) does not evaluate the elastic interaction if compatibility is not
satisfied.

On the other hand, the matrix H™ introduced in Section 4 corresponds to a quantitative
description of variant—variant interactions. Due to the symmetries appearing in the transformation
strain, the calculation of the determinant and of the terms of the interaction matrix have been
restricted to H'” and Det(¢”' —&’?) terms (p = 1,24). Table B2 presents the values obtained for
Det(¢"" —&?) and the minimized H'” terms.

For this evaluation of minimum of interaction matrix and corresponding domains interface
orientation, the following numerical method has been used: testing various orientations and for a
given set of them, looking for the minimum (or the minima) of corresponding interaction matrix.
This was done for unit normal vectors lying in the half space {<100),<010),<100> and



N. Siredey et al. | International Journal of Solids and Structures 36 (1999) 42894315 4313

Table B2

Results of study of interacting variants (1, p). Study of incompatibility by Inc operator or corresponding value of
Det(e™ —¢™); comparison with the calculated minimum value of interaction matrix H™”" and corresponding unit normal
to domains interface

Interacting
variant with Minimum of Normal to the domain interface
variant 1 Det(e™ —¢™) H'” (MPa) {Ni, N>, N>
1 0 0 — — —
2 0 8.79%x 1077 —0.1696 0.6969 0.6967
3 0 0 1 0 0
4 0 0 0 0.707 0.707
5 4.11x10°° 1.22x1073 —0.727 0.685 0.056
6 2.49x1073 0.72 0.706 0.168 —0.688
7 0 0 0.707 0.707 0
8 2.41x1073 0.71 —0.706 0.168 0.688
9 0 0 0 1 0
10 7.09x 1073 3.86x 1072 0.121 0.725 —0.678
11 0 0 0 0 1
12 —7.09%x107° 227x1072 —0.122 0.679 0.724
13 2.38x1073 1.06 0.121 0.725 —0.678
14 0 0 —0.707 0.707 0
15 2.44x1073 0.88 0.121 0.725 —0.678
16 —4.11x1073 1.22x 1073 0.685 0.727 0.056
17 —2.44 %1073 0.57 0.121 0.725 —0.678
18 7.81x10°¢ 7.07x10°° —0.549 0.040 —0.835
19 —241x1073 0.39 0.122 0.727 —0.676
20 0 0 0.707 0 0.707
21 0 0 0.707 0 —0.707
22 —2.38x107°? 0.55 0.121 0.725 —0.678
23 —7.81x10°°¢ 3.33x10°* —0.835 0.041 0.549
24 —249%x107° 0.47 0.121 0.725 —0.678

<00T»,<010%,<001>}. The research had been done in seven steps. After sweeping the half space
with a 20° angle step, minima are stored. For each minimum a new sweep is made with successively
an 8° angle step from — 20—+ 20° around the minimum, then a 4° angle step from —8-+8° around
the new minimum. The same operation is repeated for 2, 1 and 0.5° angle steps. Finally, because
it was found that some minima are very deep, value of interface orientation is precise with 0.1°
step.

From values presented in Table B2, some concluding remarks may be done:

e First, one can distinguish compatible variants and incompatible variants in the sense of
incompatibility operator. In the case of compatible variants, it is possible to find an interface
orientation for which interaction matrix, that is to say interaction energy, is null. The involved
variants are: 1, 2, 3,4, 7,9, 11, 14, 20 and 21. This very good agreement between incompatibility
operator and interaction energy tends to prove the suitability of the thermodynamical approach
of the material behavior developed in this paper.
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e Moreover one can note the existence of two kinds of incompatible variants. Some of them
may be called weakly incompatible variants whose interaction matrix has a low value. This is the
case for variants 5, 10, 12, 16, 18, 23 for which H'” is lower than 0.025 MPa. The other variants
should then be designed as strongly incompatible variants with respect to variant 1. For these
variants (6, 8, 13, 15, 17, 22, 24), the value of minimum of H'? is higher than 0.3 MPa, that is to
say at least one order of magnitude higher than the value of interaction matrix for the weakly
incompatible variants. In a previous paper, Patoor et al. (1996) proposed from experimental results
on Cu—Zn—Al such separation in two kinds of interaction. In the case of weak incompatible
variants, they took for the interaction matrix H"™" about one order of magnitude lower values
compared to the ones for strong incompatible variants.

Even if value of Det(¢”' —¢™”) is meaningless if different from zero, a good correlation appears
between low value of this quantity and low value for interaction matrix, while the same remark
can be made for high values.

e Finally, one can note the existence of preferential orientations for the interface plane. For
instance, unit normal <0.121,0.725, —0.678) corresponds to interface with minimum energy for
many variants.
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